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Key Take-away Messages

A RL model for feasible solutions of MIP: our work is the first attempt
to use (deep) RL methods for seeking feasible solutions for a class of
general MIPs.

The spirit of a successful heuristic: Inspired by FP, we propose the
smart feasibility pump model because it is empowered by deep RL
models.

A novel CNN for constraint matrix: We innovatively adopt a
convolutional structure for the policy network to capture the structure of

constraint matrix of MIPs.
Empirical evaluation: The results demonstrate the significant
advantages of the SFP models compared to the original FP and the

representation power of CNN.

Preliminary knowledge and background

Mixed Integer Programming (MIP): We aim at finding a feasible solution
of the following MIP:

min ¢z (la)
st. Az <b (1b)
x; €Z,NVieS (1)

Solving an MIP is computationally challenging (NP-hard in general).
Finding a feasible solution is a critical initial step for various MIP heuristics.

Feasibility Pump (FP): The basic idea of the
FP algorithm is to iteratively find and round a
continuous relaxation solution for the MIP. %]  [x1]
The FP algorithm starts with the rounded 2

optimal continuous relaxation solution of the

MIP and then searches for the nearest points Xo =' Xp ;1 ;2
in the relaxed feasible region. It continues
perturbing and rounding the new point found
at each step until a feasible solution is - Rounding
discovered or the limit of maximum number of
steps is reached. Despite being a powerful ~ Projection
heuristic, it requires solving an optimization
» Smart FP

problem within each iteration, which becomes
especially inefficient when the problem size
increases or extends to nonlinear constraint
cases.

Smart Feasibility Pump: a RL Formulation

The RL formulation
« State Space:

. SFP-MLP s; = (Flat (A), bz, &,1)
. SFP-CNN si = ([A,b], 2, %0, 1)
« Action Space and State Transition:
. Action is the movement of current solution a € A=R"
. Transaction of current solution: Tyl = [Zt + at]
. State transaction: st+1 = (Flat (A), b, 41, T4i1,1)

« Reward: violation of constraints Tt = —HAZt - bH
Policy Learning
. We use Actor-Critic with PPo for policy gradient.
. We consider two policy network structure:

SFP-MLP: the policy network is an MLP. The projection of
current solution ¢ in the state vector improves the learning
ability.
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SFP-CNN: the policy network is a CNN. The CNN is so
powerful to capture constraint structure and let us get rid of
the computationally inefficient component Tt
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Evaluation Metrics

+ EpLenMean & EplenStd: the mean and the standard deviation of the number of
steps the agent reach a feasible solution or the maximum number of steps (100)

« A model with higher EpLenMean and a lower EpLenStd means it steadily produce
worse solutions.

Experiments

n=5m=6 n=7m=9 n=9m=18 ‘
FP MLP CNN | FP MLP CNN | FP  MLP CNN
EpLenMean | 432 150 11.1 | 655 328 282 | 90.0 903 540
EpLenStd | 48.6 346 290 | 468 464 442 | 29.7 309 496

EpLenMax | 100.0 100.0 100.0 | 100.0 100.0 100.0 | 100.0 100.0 100.0
90 Quant 100.0  100.0 29.5 | 100.0 100.0 100.0 | 100.0 100.0 100.0
10 Quant 1.0 1.0 1.0 1.0 1.0 1.0 612 515 1.0

Table 1: Comparison of SFP and FP
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(a) 5-dim, 6 constraints (b) 7-dim, 9 constraints (c) 9-dim, 18 constraints

Figure 1: Comparison of SFP-MLP and SFP-CNN
SFP agent finds a feasible solution to IP/MIPs faster than the FP algorithm (Table 1).
SFP-MLP and SFP-CNN are comparable when the problem size is small (Figure 1(a))
SFP-CNN outperforms SFP-MLP in the sense that it converges faster to a lower
EpLenMean with comparable EpLenStd when the problem size becomes larger
(Figures 1(b,c)).
The performance of SFP-MLP is largely dampened without the projection information,
while the performance of SFP-CNN without projection is better than that of SFP-MLP
with projection.
SFP-CNN can be more computationally efficient than SFP-MLP with larger problem
scales. The representational power of the CNN structure captures hidden information in
the constraint matrices.



