Harnessing Large Language Models for Market Research: A Data-augmentation Approach

Mengxin Wang¹, Dennis Zhang², Heng Zhang³

¹ Naveen Jindal School of Management, The University of Texas at Dallas, ² Olin School of Business, Washington University in St. Louis, St. Louis, ³ W. P. Carey School of Business, Arizona State University

Misalignment of LLM and Human Choice data

Naïve augmentation: Use $D_{real} + D_{aug}$ with standard MLE to estimate the choice preference parameters:

$$\hat{\boldsymbol{\beta}}^{\mathsf{Naive}} = \arg \max_{\boldsymbol{\beta} \in \mathbb{R}^d} \left\{ \frac{1}{m+n} \sum_{i=1}^{m+n} \sum_{j \in \mathcal{K}^+} \log \sigma_j(\mathbf{x}_i; \boldsymbol{\beta}) \right\}.$$

Naïve augmentation with LLM-generated choice data leads to inaccurate estimation:

• Finding the right prompt & LLM can become a wild-goose chase

Contributions Despite this imperfect alignment, we develop a statistical data augmentation approach for extracting value from LLM-generated choice data Large-scale empirical studies show that our method consistently reduces estimation error with various LLMs, which saves 22%-82% of market research costs • **Performance improves with better data**, showing the potential with larger models/more advanced prompting methods We provide theoretical performance guarantees for our method

Our Approach: AI-Augmented Estimation (AAE)

• Primary set: $\mathcal{D}^{\mathsf{P}} = \{(\mathbf{x}_i^{\mathsf{P}}, y_i^{\mathsf{P}}, z_i^{\mathsf{P}})\}_{i=1}^m$ • Auxiliary set $\mathcal{D}^{\mathsf{A}} = \{(\mathbf{x}_i^{\mathsf{A}}, z_i^{\mathsf{A}})\}_{i=1}^n$ • Assumption: $\mathbb{P}(y = j | \mathbf{x}, z) = g_j(\mathbf{x}, z; \theta^*), \forall j \in \mathcal{K}^+$

AI-Augmented Estimation (AAE) Step 1: Obtain an estimator of θ^* using the primary set

$$\{X_i^\mathsf{P}, z_i^\mathsf{P}\}_{i=1}^m \xrightarrow{\mathbf{v}} (y_i^\mathsf{P})_{i=1}^m$$

Step 2: Using the auxiliary data, obtain

$$AAE = \arg \max_{\boldsymbol{\beta} \in \mathbb{R}^{kd}} \left\{ \widehat{Q}(\hat{\boldsymbol{\theta}}; \boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j \in \mathcal{K}^{+}} g_j(\mathbf{x}_i^{\mathsf{A}}, z_i^{\mathsf{A}}; \hat{\boldsymbol{\theta}}) \log \sigma_j(\mathbf{x}_i^{\mathsf{A}}; \boldsymbol{\beta}) \right\}$$

Theoretical Performance Guarantee

Asymptotic Consistency and Normality of AAE

$$\boldsymbol{\beta}^{*} \in \arg\min_{\boldsymbol{\beta}\in\mathbb{R}^{d}} \left\{ \mathbb{E}_{\mathbf{x}} \Big[\mathsf{KL}\big(\mathbb{P}(y|\mathbf{x}) \,\big|\, \sigma_{y}(\mathbf{x},\boldsymbol{\beta})\big) \Big] = \mathbb{E}_{\mathbf{x}} \left[\sum_{j\in\mathcal{K}^{+}} \mathbb{P}\big(y=j|\mathbf{x}\big) \log\left(\frac{\mathbb{P}\big(y=j|\mathbf{x}\big)}{\sigma_{j}(\mathbf{x};\boldsymbol{\beta})}\right) \right] \right\}.$$
(1)

Theorem 1 (Consistency and Asymptotic Normality of AI-augmented Estimator)

- (i) Under certain regularity assumption, the optimizer β^* defined in (1) is unique and the AAE satisfies $\hat{\boldsymbol{\beta}}^{AAE} \xrightarrow{\mathrm{P}} \boldsymbol{\beta}^*, when \ m, n \to \infty.$
- (ii) Under certain regularity assumptions, it holds that

$$\begin{split} \sqrt{n}(\hat{\boldsymbol{\beta}}^{\mathsf{AAE}} - \boldsymbol{\beta}^*) &= \boldsymbol{\Omega}^{-1} \times \left(\frac{1}{n} \sum_{i=1}^n \left(\mathbf{p}(\mathbf{x}_i, z_i) - \boldsymbol{\sigma}(\mathbf{x}_i, \boldsymbol{\beta}^*) \right) \otimes \mathbf{x}_i + \sqrt{\frac{n}{m}} \boldsymbol{\Gamma} \times \sqrt{m}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*) \right) + o_{\mathrm{P}}(1) \\ & \rightsquigarrow N \Big(\mathbf{0}, \, \boldsymbol{\Omega}^{-1} \big(\mathbf{J} + \boldsymbol{\rho} \times \boldsymbol{\Gamma} \boldsymbol{\Lambda} \boldsymbol{\Gamma}^\top \big) \boldsymbol{\Omega}^{-1} \Big). \end{split}$$

Value of AAE: Variance Reduction

Proposition 1 (Dominance of Var^{AAE}.) Assume certain regularity assumptions hold and

 $\boldsymbol{\Lambda} = \mathbb{E}_{\mathbf{x},y,z} \left[\nabla_{\theta} \log g_y(\mathbf{x},z,\boldsymbol{\theta}^*) \nabla_{\theta} \log g_y(\mathbf{x},z,\boldsymbol{\theta}^*)^{\top} \right]^{-1}.$

- (i) It holds that $\check{\mathbf{J}} \succeq \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{\Gamma}^{\top}$. Therefore, for any $\delta > 0$ and any m, $\mathsf{Var}^{\mathsf{AAE}} \prec \mathsf{Var}^{\mathsf{P}} + \delta \mathbf{I}$ for all n sufficiently larae
- (ii) If $\check{\mathbf{J}} \succ \Gamma \Lambda \Gamma^{\top}$, for any m, $\mathsf{Var}^{\mathsf{AAE}} \prec \mathsf{Var}^{\mathsf{P}}$ for all n sufficiently large.

Santurkar, Shibani, et al. "Whose opinions do language models reflect?." International Conference on Machine Learning. PMLR, 2023.

Empirical Results

We examine the performance of the AAE based on a real choice-based conjoint dataset for COVID-19 vaccines (Kreps et al. 2020). A total of 1,971 US adults responded to the survey, each expressing preferences for a series of hypothetical vaccines.

Estimation Error Reduction

			m = 50	1	ĩ	n = 100)	ŋ	n = 150)	η	n = 200)
Model	Prompt	А	Naive	AAE	А	Naive	AAE	А	Naive	AAE	А	Naive	AAE
GPT-3.5-	Basic	-5.45	-10.80	-13.72	1.30	-4.53	-6.90	6.90	-2.06	-2.09	7.56	-1.79	-0.96
urbo-0613	CoT	20.18	16.81	-14.79	26.93	20.62	-8.09	32.53	23.06	-3.12	33.19	21.10	-1.82
GPT-3.5-	Basic	-8.91	-9.92	-13.29	-2.16	-3.21	-6.50	3.43	0.86	-1.78	4.10	1.60	-0.76
urbo-0125	CoT	15.67	10.95	-14.84	22.43	14.71	-7.72	28.02	17.72	-2.74	28.69	16.16	-1.81
	Basic	14.81	12.39	-15.70	21.56	16.20	-8.04	27.16	20.03	-3.12	27.82	19.20	-2.04
GF 1-4	CoT	21.77	18.12	-15.80	28.53	22.49	-8.30	34.12	26.33	-3.37	34.79	24.10	-2.27
	Basic	15.70	13.05	-15.55	22.46	17.34	-8.06	28.05	20.90	-3.07	28.72	19.65	-1.84
GPT-40	CoT	20.61	16.50	-15.74	27.37	20.49	-8.06	32.96	23.65	-3.31	33.63	21.28	-2.25
	\mathbf{FS}	12.46	9.71	-16.16	19.22	14.56	-8.26	24.81	18.41	-3.44	25.48	17.50	-2.10
GPT-40 `ine-tuned	Basic	4.83	3.18	-16.66	11.59	7.96	-9.58	17.18	12.46	-4.81	17.85	11.31	-3.36

Table 1: Change in MAPE per Feature (%)

Data and Cost Saving

Model	Prompt	m = 50	m = 100	m = 150	m = 200
CPT_3 5_Turbo_0613	Basic	74.5	48.5	31.4	2.2
GI 1-5.5-10100-0015	CoT	78.6	57.7	43.1	15.2
CPT-3 5-Turbo-0195	Basic	72.5	44.7	28.3	-0.8
GI 1-5.5-10100-0125	CoT	78.8	54.5	39.9	15.0
CPT-4	Basic	81.6	57.2	43.2	19.4
01 1-4	CoT	81.9	59.6	45.0	22.2
	Basic	81.3	57.4	42.8	15.6
GPT-40	CoT	81.8	57.4	44.7	22.0
	\mathbf{FS}	82.7	59.4	45.6	20.3
GPT-40 Finetuned	Basic	83.8	66.2	54.0	32.7

Table 2: Percentage of Saving in Data Size (%)

Figure 1: Estimation Accuracy vs. Market Research Costs

References

Kreps, Sarah, et al. "Factors associated with US adults' likelihood of accepting COVID-19 vaccination." JAMA network open 3.10 (2020): e2025594-e2025594

