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1. Introduction

The content promotion policy plays a prominent role in online
content platforms.

For online content platforms,
Direct platform promotion

content clicks come from < -2 2= KA K ,
{ - Diffusion effect from other users

(usually ignored in previous literature)

We study the diffusion-based promotion strategy.

Key Takeaways:
» Platform promotion changes the nature of the diffusion process

for online content;

 |tis important to account for the diffusion effect of online
content when performing content promotion;

* The platform’s ability to distinguish the role of adopters yields
valuable information.

Objective: maximize the total
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With the subroutine, we can:
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3. Candidate Generation and Promotion Optimization

adoptions in L time periods.

Two-stage decision: (1) Candidate set + (2) Promotion probability
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1. This problem is NP-hard, with highly nonlinear constraints and combinatoric nature
We propose a subroutine for the second-stage based on structural properties.

» solve the second-stage in quadratic time;
» prove that first-stage objective is a submodular set function;
» speed up the classic greedy framework in an order of K.
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D-OLS estimators are
1. Asymptotically consistent
2. Smaller asymptotic variance compared to traditional OLS

4. Parameter Estimation

Double OLS (D-OLS) method
The platforms can distinguish between innovators and imitators.
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Estimation results for parameters p and g. Color shaded areas denote the 95% confidence interval.
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2. Diffusion Model

The real adoption curve of online content from a large-scale video-
sharing company largely deviates from the Bass diffusion model.

Bass diffusion model (BDM)
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5. Experiments Results from a Large-scale Video Sharing Platform

Dataset: one of the largest video-sharing platforms in China.
46,444 short videos; 518,646 users;

20 days (7/1/2020-7/20/2020)

Significantly stronger innovative effect than the consumer products

Heterogeneity among
~—— categories

A slight negative correlation
~ between p and g in the same
category
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Diffusion curve for an online video and the
corresponding fitted BDM curve.

Distribution of estimated parameters
pandq
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Non-triviality of the CGP problem

Fithess to true diffusion curve

OBM with D-OLS estimation can fit the
true diffusion curve well.
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Performance of the Adaptive Greedy Algorithm

Benchmarks:

« Candidate generation by popularity (POP) +22.48%
» Candidate generation by attractiveness (ATT) +72.86%
« CGP without diffusion effect (NoD) +34.14%
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Algorithm performance compared
with benchmarks
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